
J Math Chem (2013) 51:569–587
DOI 10.1007/s10910-012-0103-x

ORIGINAL PAPER

Bounds for the Kirchhoff index via majorization
techniques

Monica Bianchi · Alessandra Cornaro ·
José Luis Palacios · Anna Torriero

Received: 9 May 2012 / Accepted: 3 October 2012 / Published online: 14 October 2012
© Springer Science+Business Media New York 2012

Abstract Using a majorization technique that identifies the maximal and minimal
vectors of a variety of subsets of R

n , we find upper and lower bounds for the Kirchhoff
index K (G) of an arbitrary simple connected graph G that improve those existing in
the literature. Specifically we show that

K (G) ≥ n

d1

[
1

1 + σ√
n−1

+ (n − 2)2

n − 1 − σ√
n−1

]
,

where d1 is the largest degree among all vertices in G,

σ 2 = 2

n

∑
(i, j)∈E

1

di d j
=
(

2

n

)
R−1(G),

and R−1(G) is the general Randić index of G for α = −1. Also we show that

K (G) ≤ n

dn

(
n − k − 2

1 − λ2
+ k

2
+ 1

θ

)
,
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where dn is the smallest degree, λ2 is the second eigenvalue of the transition probability
of the random walk on G,

k =
⌊

λ2 (n − 1) + 1

λ2 + 1

⌋
and θ = λ2 (n − k − 2) − k + 2.

Keywords Majorization · Schur-convex functions · Graphs · Kirchhoff index

1 Introduction

The Kirchhoff index K (G) of a simple connected graph G = (V, E) with vertex set
V = {1, 2, . . . , n} and edge set E was defined by Klein and Randić in [12] as

K (G) =
∑
i< j

Ri j , (1)

where Ri j is the effective resistance between vertices i and j , which can be computed
using Ohm’s law. This index has undergone intense scrutiny in recent years in the
Mathematical Chemistry milieu because it has proven to be useful in discriminat-
ing among chemical molecules according to their cyclicity. A variety of techniques
have been used, including graph theory, algebra (the study of the Laplacian and of
the normalized Laplacian), electric networks, probabilistic arguments involving hit-
ting times of random walks, and discrete potential theory (equilibrium measures and
Wiener capacities), among others. The references that follow are a sample, by no
means exhaustive, of these diverse techniques, whose end results usually follow either
of these two paths: on the one hand, exact values for K (G) are obtained for graphs
endowed with some form of symmetry or special property [1,7,17,28]; on the other
hand, general bounds for K (G) are found in terms of invariants of G such as |V |, |E |,
etc., and sometimes extremal graphs are found for specific families of graphs, as in
[18,25,29] and [30].

In what follows we adopt this latter approach of finding upper and lower bounds
for K (G), with a technique from real analysis, namely majorization order and Schur-
convexity, that adds new insights and is flexible enough to produce improvements of
known bounds.

Schur-convexity and majorization order are widely discussed in [16]. It is worth
pointing out previous uses of the majorization partial order in chemistry and a gen-
eral overview is given in Klein [11]. Indeed, the degree-sequence partial order has
previously been studied from a chemical perspective in [23,13]. By the property that
Schur-convex functions preserve the majorization order, useful characterizations of
extremal vectors of suitable subsets of R

n can be derived. Significant applications
of this methodology concern the localization of real spectrum matrices [2,24]. More
recently the problem of determining bounds for some relevant topological indicators
of graphs which can be usefully expressed as Schur-convex functions has been inves-
tigated in [3,4] and [8]. One major advantage of this technique is to provide a unified
approach to recover many bounds in the literature as well as to obtain better ones.
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In this paper, after some preliminary definitions and notations concerning basic
graph theory and the majorization order, we recall some results given in [3] aimed to
determine extremal vectors with respect to majorization order of suitable subsets of
R

n . In Sect. 3, we adopt this technique to provide new upper and lower bounds for
the Kirchhoff index both of general graphs and of particular classes of graphs. Next,
some theoretical and numerical examples are presented, comparing our results with
the literature. We conclude with some remarks regarding the degree-Kirchhoff index,
another index loosely related to the Kirchhoff index.

2 Notations and preliminaries

Let us recall some basic graph notations (for more details we refer to [9] and [26]).
Let G = (V, E) be a simple, connected, undirected graph where V = {1, 2, . . . , n}

is the set of vertices and E ⊆ V × V the set of edges, |E | = m.
The degree sequence of G is denoted by π = (d1, d2, . . . , dn) and it is arranged

in non- increasing order d1 ≥ d2 ≥ · · · ≥ dn , where di is the degree of vertex i . The
equality

∑n
i=1 di = 2m holds.

Let A be the adjacency matrix of G and λ1 (A) ≥ λ2 (A) ≥ · · · ≥ λn (A) be the
set of its (real) eigenvalues. Given the diagonal matrix D of vertex degrees, the matrix
L = D − A is known as the Laplacian matrix of G. Let λ1 (L) ≥ λ2 (L) ≥ · · · ≥
λn(L) = 0 be its eigenvalues. The inequality λ1(L) ≥ 1 + d1 is well known. The
condition λn−1(L) > 0 characterizes the connected graphs.

The simple random walk on G is the process that jumps from a vertex i to any
adjacent vertex j with equal transition probabilities 1

di
. In other words, this process

is the Markov chain with transition matrix P = D−1 A and its real eigenvalues are
1 = λ1 (P) > λ2 (P) ≥ · · · ≥ λn (P) ≥ −1. For a bipartite graph, the spectrum of P
is symmetric and, in particular, λn(P) = −1.

We now recall some notions about the majorization order and Schur-convexity (for
more details see [16]). Let D = {x ∈ R

n : x1 ≥ x2 ≥ · · · ≥ xn} and

s0 = 0, sj =
j∑

i=1

ei, vj = sn − sj j = 1, . . . , n

where ej, j = 1, . . . , n are the fundamental vectors of R
n . Given two vectors y, z ∈ D,

the majorization order y � z means:{〈
y, sk

〉 ≤ 〈z, sk
〉
, k = 1, ..., (n − 1)

〈y, sn〉 = 〈z, sn〉
where 〈·, ·〉 is the inner product in R

n . In the following we consider, without loss of
generality, some subsets of

�a = D ∩ {x ∈ R
n+ : 〈x, sn〉 = a},

where a ∈ R, a > 0. Given a closed subset S ⊆ �a , a vector x∗(S) ∈ S is said
to be maximal for S with respect to the majorization order if x � x∗(S) for each
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x ∈ S. Analogously, a vector x∗(S) ∈ S is said to be minimal for S with respect to the
majorization order if x∗(S) � x for each x ∈ S. Notice that the existence of maximal
and minimal elements of S are ensured by the compactness of the upper and lower
level sets:

U (z) = {x ∈ S : z � x} , L(z) = {x ∈ S : x � z} .

Remark 1 If we want to study the maximal and minimal elements of a subset S′ of

�′ = {x ∈ R
n : x1 ≥ x2 ≥ · · · ≥ xn ≥ L ,

〈
x, sn〉 = a′ > Ln}

we can consider the change of variable yi = xi − L , 1 ≤ i ≤ n. Then y belongs to a
subset S of �a′−Ln with (a′ − Ln) > 0 and it easy to verify that

x∗(S′) = x∗(S) + Lsn, x∗(S′) = x∗(S) + Lsn,

i.e. the maximal and minimal elements of S′ can be easily deduced from the maximal
and minimal elements of S adding to each component the constant L .

Definition 2 A symmetric function φ: A → R, A ⊆ R
n , is said to be Schur-convex

on A if x � y implies φ(x) ≤ φ(y). If in addition φ(x) <φ(y) for x � y but x is not a
permutation of y, φ is said to be strictly Schur-convex on A. A function φ is (strictly)
Schur-concave on A if −φ is (strictly) Schur-convex on A.

Thus, the set of S-convex functions preserves the ordering of majorization. In what
follows we make use of some particular classes of functions yielding S-convex func-
tions:

Proposition 3 Let I ⊂ R be an interval and let φ(x) = ∑n
i=1 g(xi ), where g : I →

R. If g is strictly convex on I , then φ is strictly Schur-convex on I n = I × · · · × I︸ ︷︷ ︸
n−times

.

It is worthwhile to consider the following result:

Proposition 4 Let us consider two sets S
′′

and S′, with S
′′ ⊆ S′, which admit max-

imal and minimal elements with respect to the majorization order. If φ is a strictly
Schur-convex function, then

φ
(
x∗ (S′′)) ≤ φ

(
x∗ (S′))

φ
(
x∗
(
S′)) ≤ φ

(
x∗
(
S′′))

and the equality holds if and only if x∗ (S′′) = x∗ (S′) and x∗
(
S′′) = x∗

(
S′).

In [3] the maximal and minimal elements of the set

Sa = �a ∩ {x ∈ R
n : Mi ≥ xi ≥ mi , i = 1, . . . , n}

123



J Math Chem (2013) 51:569–587 573

where M1 ≥ M2 ≥ · · · ≥ Mn, m1 ≥ m2, . . . ≥ mn were derived. For the sake of
simplicity, we recall the main results given in [3]. Let M = [M1, M2, . . . , Mn]T and
m = [m1, m2, . . . , mm]T , and denote by x ◦ y the Hadamard product of vectors x and
y. The integer part of the real number x is represented by �x�.

Theorem 5 Let k ≥ 0 be the smallest integer such that〈
M, sk

〉
+
〈
m, vk

〉
≤ a <

〈
M, sk+1

〉
+
〈
m, vk+1

〉
,

and θ = a − 〈M, sk
〉− 〈m, vk+1

〉
. Then

x∗(Sa) = M ◦ sk + θek+1 + m ◦ vk+1

From Theorem 5 a useful corollary follows

Corollary 6 (see [16]) Let 0 ≤ m < M and m ≤ a

n
≤ M. Given the subset

S1 = �a ∩ {x ∈ R
n : M ≥ x1 ≥ x2 ≥ · · · ≥ xn ≥ m

}
we have

x∗(S1) = Msk + θek+1 + mvk+1,

where k =
⌊

a − nm

M − m

⌋
and θ = a − Mk − m (n − k − 1) .

Theorem 7 Let k ≥ 0 and d ≥ 0 be the smallest integers such that

1) k + d < n

2) mk+1 ≤ ρ ≤ Mn−d where ρ = a − 〈m, sk〉 − 〈M, vn−d〉
n − k − d

.

Then

x∗(Sa) = m ◦ sk + ρ(sn−d − sk) + M ◦ vn−d.

From Theorem 7 the next corollaries follow

Corollary 8 (see [16]) Let 0 ≤ m < M and m ≤ a

n
≤ M. Then x∗(S1) = a

n
sn.

Corollary 9 (see [3], Corollary 14) Let us consider the set

S[h]
2 = �a ∩ {x ∈ R

n : xi ≥ α, i = 1, . . . , h, 1 ≤ h ≤ n, 0 < α ≤ a

h
}

Then

x∗(S[h]
2 ) =

⎧⎪⎨
⎪⎩

a

n
sn if α ≤ a

n

αsh + ρvh with ρ = a − αh

n − h
if α >

a

n

.
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Corollary 10 (see [3], Corollary 15) Let 1 ≤ h ≤ (n − 1) and 0 < α < a. Given the
subset

S[h]
3 = �a ∩ {x ∈ R

n : xi ≤ α, i = h + 1, . . . n
}
,

we have

x∗(S[h]
3 ) =

⎧⎨
⎩

a

n
sn if α ≥ a

n

ρsh + αvh with ρ = a − (n − h)α

h
if α <

a

n

3 Bounds for K(G), revised and new

In addition to its original Definition (1), the Kirchhoff index has the expression

K (G) = n
n−1∑
i=1

1

λi (L)
, (2)

in terms of the eigenvalues of the Laplacian L (see [10,31]). If G is d-regular, then

L = d I − A, P = D−1 A = I − 1

d
L and

λn−i+1(P) = 1 − λi (L)

d
i = 1, . . . , n. (3)

In this case, from (2), the alternative expression

K (G) = n

d

n∑
i=2

1

1 − λi (P)

in terms of the eigenvalues of the transition matrix P holds (see [20]).
In case G is an arbitrary connected graph, we do not have such a compact expression,

but still we have the bounds of Corollary 2 in [18]:

(
n

d1

) n∑
i=2

(
1

1 − λi (P)

)
≤ K (G) ≤

(
n

dn

) n∑
i=2

(
1

1 − λi (P)

)
. (4)

All these expressions of K (G) in terms of sums of inverses of eigenvalues can be
used to find upper and lower bounds, as was done in [20] and [30].

In order to get new bounds for K (G), we want to apply the majorization technique
to the summations in (4), and we must deal with vectors arranged in nonincreasing
order. With this aim, let us make a change of variable setting

νi = 1 − λn−i+1(P), i = 1, . . . , (n − 1).

For the vector ν ∈ R
n−1 we have

0 < νn−1 ≤ νn−2 ≤ · · · ≤ ν1 ≤ 2
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and
∑n−1

i=1 νi = n since

tr(P) =
n∑

i=1

λi (P) = 0 ⇒
n∑

i=2

λi (P) = −1.

In order to tackle the inequalities in (4), we evaluate the extremal values of the Schur-
convex function

f (ν1, ν2, . . . , νn−1) =
n−1∑
i=1

1

νi
. (5)

Let us consider the sets

S = {ν ∈ R
n−1 :

n−1∑
i=1

νi = n, 0 < νn−1 ≤ νn−2 ≤ · · · ≤ ν1 ≤ 2}

and

S0 = {ν ∈ R
n−1 :

n−1∑
i=1

νi = n, 0 ≤ νn−1 ≤ νn−2 ≤ · · · ≤ ν1 ≤ 2}

By Corollary 8 we know that the minimal element of S0 with respect to the majorization
order is given by

⎛
⎜⎜⎝ n

n − 1
,

n

n − 1
, . . . ,

n

n − 1︸ ︷︷ ︸
n−1

⎞
⎟⎟⎠

The function f attains its minimum at this point, with the minimum value given by
(n−1)2

n . Since the minimum point belongs also to S, we have minS f = minS0 f =
(n−1)2

n . By (4) we get

K (G) ≥ (n − 1)2

d1
(6)

which is the bound given in [18], Corollary 4. Notice that the lower bound is attained
if and only if G = Kn , the complete graph on n vertices.

Analogously, we can obtain the bound for bipartite graphs. In this case λn = −1;
this implies ν1 = 2, and so we face the set

Sb
0 = {ν ∈ R

n−2 :
n−1∑
i=2

νi = n − 2, 0 ≤ νn−1 ≤ νn−2 ≤ · · · ≤ ν2 ≤ 2} (7)
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and the Schur-convex function

f b(ν1, . . . , νn−1) = 1

2
+

n−1∑
i=2

1

νi
. (8)

Since the minimal element with respect to the majorization order of Sb
0 is given by

⎛
⎝1, 1, . . . , 1︸ ︷︷ ︸

n−2

⎞
⎠ ,

the function f attains its minimum at this point, with minimum value given by 2n−3
2 .

Again by (4) we get the bound given in [18], Corollary 3:

K (G) ≥ n(2n − 3)

2d1
. (9)

To obtain better bounds by means of majorization techniques, some subsets of S0, or
Sb

0 in case of bipartite graphs, should be considered. Indeed, if we have more infor-
mation on the localization of the eigenvalues λi (P) of the transition matrix P, we
can improve the lower bound by using Corollaries 9 and 10 and the upper bound of
Corollary 6. In the following section we explore this possibility.

3.1 Lower bounds

We start analyzing some cases related to non-bipartite graphs.

Case 1: Assume we have the additional eigenvalue bound:

λn(P) ≤ −β < 0.

We can say that

ν1 = 1 − λn (P) ≥ 1 + β = α ≥ n

n − 1
.

In the case of α > n
n−1 it is possible to get sharper bounds for the Kirchhoff index by

applying Corollary 9. We consider the subset of S0 given by

S1
0 = {ν ∈ S0 : ν1 ≥ α}.

In order to compute the minimal element of S1
0 , we apply Corollary 9, obtaining

⎛
⎜⎜⎝α,

n − α

n − 2
,

n − α

n − 2
, . . . ,

n − α

n − 2︸ ︷︷ ︸
n−2

⎞
⎟⎟⎠ .
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Thus the Schur-convex function f in (5) has minimum value in S1
0 given by 1

α
+

(n − 2)2

n − α
and this is also the minimum value of f on

S1 = {ν ∈ S : ν1 ≥ α}

We can thus infer

K (G) ≥ n

d1

[
1

α
+ (n − 2)2

n − α

]
(10)

or, equivalently

K (G) ≥ n

d1

[
1

1 + β
+ (n − 2)2

n − 1 − β

]
. (11)

Case 2: Assume we know that

λ2 (P) ≥ β > 0. (12)

We can say that

νn−1 = 1 − λ2 (P) ≤ 1 − β = α <
n

n − 1
,

and we face the set

T 1
0 = {ν ∈ S0 : νn−1 ≤ α}.

By Corollary 10, the vector of minimal element of T 1
0 is given by

⎛
⎜⎜⎝n − α

n − 2
,

n − α

n − 2
, . . . ,

n − α

n − 2︸ ︷︷ ︸
n−2

, α

⎞
⎟⎟⎠ ,

and, by the same arguments as before, we get the bound (10) which, in terms of β, is
now given by

K (G) ≥ n

d1

[
1

1 − β
+ (n − 2)2

n − 1 + β

]
. (13)

We now investigate the case of bipartite graphs.
Since λn (P) = −1, case 1 is not significant and case 2 is equivalent to λn−1 (P) ≤

−β < 0, by the symmetry of the spectrum. Thus we only discuss a bound of type (12)
and we face the set
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Sb
λ2

=
{
ν ∈ Sb

0 : νn−1 ≤ α
}

.

By Corollary 10, the vector of the minimal element of Sb
λ2

is

⎛
⎜⎜⎝n − 2 − α

n − 3
,

n − 2 − α

n − 3
, . . . ,

n − 2 − α

n − 3︸ ︷︷ ︸
n−3

, α

⎞
⎟⎟⎠ , (14)

and, taking into account (8), the corresponding bound is

K (G) ≥ n

d1

[
1

2
+ 1

α
+ (n − 3)2

n − 2 − α

]
,

which, in terms of β is

K (G) ≥ n

d1

[
β − 3

2 (β − 1)
+ (n − 3)2

n − 3 + β

]
. (15)

3.1.1 A general lower bound

Now we exploit Case 1 above in order to get a general lower bound. For every matrix
P with real eigenvalues λ1(P) ≥ λ2(P) ≥ · · · ≥ λn(P) the following inequality is
well-known

λn(P) ≤ μ − σ√
n − 1

(16)

where μ = tr(P)
n and σ 2 = tr(P2)

n −
(

tr(P)
n

)2
(see [27]).

If P is a transition matrix of the walk on a given connected graph G, we observe

that tr(P) = 0 and tr(P2) = 2
∑

(i, j)∈E
1

di d j
. Then μ = 0 and

σ 2 = 2

n

∑
(i, j)∈E

1

di d j
=
(

2

n

)
R−1(G),

where R−1(G) is the general Randić index for α = −1 (see [22] and [14]). Moreover,
by the equality

σ 2 = tr(P2)

n
= 1 +∑n

i=2 λ2
i

n

and the conditions on the eigenvalues of P , it easily follows that P has at least one
eigenvalue whose absolute value is less than one. This gives σ 2 < 1. Notice that the
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upper bound σ = 1 is attained by any unconnected graph with an even number n of

vertices and
n

2
connected components, each of which of order two. In this case, the

spectrum of P is

⎧⎪⎨
⎪⎩−1,−1, . . . ,−1︸ ︷︷ ︸

n/2

, 1, 1, . . . , 1︸ ︷︷ ︸
n/2

⎫⎪⎬
⎪⎭ and consequently σ = 1.

It is also worth noting that 1
n−1 is the minimal value attainable by σ 2 among all

connected graph of order n. This follows by applying the majorization technique to
the set

S =
{

λ2(P) ≥ λ3(P) ≥ · · · λn(P) ≥ −1 :
n∑

i=2

λi (P) = −1

}
.

Indeed, taking into account Remark 1, the minimal element of the set S is(
− 1

n − 1
, . . . ,− 1

n − 1

)
︸ ︷︷ ︸

(n−1)times

which yields σ = 1√
n − 1

. Notice that this value corre-

sponds to the variance of the spectrum of the transition matrix P associated to the
complete graph Kn .

Applying now (11) with β = σ√
n−1

, we get the following

Proposition 11 For any simple connected G

K (G) ≥ n

d1

[
1

1 + σ√
n−1

+ (n − 2)2

n − 1 − σ√
n−1

]
. (17)

The next proposition contributes to show that the new bound (17 ) always performs
better than (6) except in the case where G = Kn for which the two bounds coincide.

Proposition 12 Let G be a simple connected graph on n vertices, with n ≥ 3. The

lower bound of K (G) in (17) is an increasing function of σ for
1√

n − 1
≤ σ < 1,

where the equality in the left side holds if and only if G = Kn .

Proof We have already noticed that
1√

n − 1
≤ σ < 1, where the equality in the left

side holds if and only if G = Kn . We proceed to show that the lower bound in (17) is
an increasing function of σ. Denote by x = 1 + σ√

n−1
and consider the function

g(x) = n

d1

[
1

x
+ (n − 2)2

n − x

]

The first derivative of g(x) is:

g′(x) = n

d1

[
− 1

x2 + (n − 2)2

(n − x)2

]
.
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Table 1 Lower bounds for Kn ,
Kd and Pn

Graph σ 2 bound (17)

Kn 1/(n − 1) (n − 1)

Kd 1/d n
d

(
1

1+ 1√
d(n−1)

+ (n−2)2

n−1− 1√
d(n−1)

)

Pn
n + 1

2n
n
2

⎛
⎜⎜⎝ 1

1+
√

n + 1

2n (n − 1)

+ (n−2)2

n−1−
√

n + 1

2n (n − 1)

⎞
⎟⎟⎠

Then, it is easy to check that for
n

n − 1
≤ x < 1+ 1√

n − 1
, g is an increasing function

of x with minimum value attained at x = n
n−1 which corresponds to G = Kn . ��

Notice that, thanks to Proposition 4, the new bound (17) always performs better
than (6 ). Indeed, for the complete graph Kn the bounds are equal, while for all other
type of graphs, since σ > 1√

n−1
by Proposition 12, the minimal element of the set S1

majorizes the minimal element of the set S0 and the bound improves.
In Table 1 we summarized the bounds of some particular classes of graphs with

n ≥ 3, where Kd is a d−regular graph and Pn a path on n vertices.

3.1.2 d−regular graphs

For a d-regular graph Kd we have further information about the eigenvalues of the tran-

sition matrix P . Indeed, by the fact that λ1(L) ≥ 1+d and (3), we get λn (P) ≤ − 1

d
,

that is tighter than the bound λn (P) ≤ − σ√
n − 1

= − 1√
d (n − 1)

. Applying (11)

we have:

K (G) ≥ n

d

⎡
⎢⎣ 1

1 + 1

d

+ (n − 2)2

n − 1 − 1

d

⎤
⎥⎦ = n

1 + d
+ n(n − 2)2

nd − 1 − d
. (18)

Notice that (18) is equal to (2) in [20], that corresponds to bound (1) in [30] for the
particular case of d-regular graphs (Table 2).

Bound (18) can be strengthened if some tighter bounds on λ1 are available. In [15],
Corollary 9, it is shown that for a d-regular graph of diameter D

λ1(L) ≥ d + 2D

D + 1
.

For D > 1 this bound is tighter than λ1(L) ≥ d + 1, while the case D = 1 corre-
sponds to the complete graph. For all graphs with a known diameter D > 1, we can
thus improve bound (18) with the following:
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Table 2 Numerical results for a
2-regular graph

n Bound (18) Bound (19)

3 2 2

4 4.533 4.629

5 8.095 8.25

6 12.667 13.008

7 18.242 18.667

8 24.821 25.448

50 1204.296 1211.784

75 2743.878 2755.514

Table 3 Numerical results for
the d-cube, with n = 2d , vertex
degree and D equal to d

d Bound (18) Bound (19)

3 16.4 16.547

4 56.353 56.556

5 192.346 192.626

K (G) ≥ n

d

[
1

1 + 2D
d(D+1)

+ (n − 2)2

n − 1 − 2D
d(D+1)

]
(19)

For a circle we know that D = n

2
for n even and D = n − 1

2
for n odd. In Table 3 we

summarize the results for two families of d−regular graph.

3.1.3 Using the Cheeger constant

Next we want to explore Case 2 where an information of the type in equation (12) is
available. The following inequality is provided in [21]:

λ2 (P) ≥ 1 − 2h, (20)

where h is the Cheeger constant (for more details and in-depth analysis see [6]). When
1 − 2h > 0, we are able to improve bounds (6) or (9). For instance let us consider a
full binary tree of depth d > 1. It has n = 2d+1 − 1 vertices, m = 2d+1 − 2 edges

and d1 = 3. For such a tree h = 1

2d+1 − 3
(see Example 3.3 in [21]), and bound (20)

becomes

λ2 ≥ 1 − 2

2d+1 − 3
. (21)
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Since a tree is a bipartite graph, by (15) we have

K (G) ≥ n

3

[
2d − 1 +

(
2d+1 − 3

)
(n − 3)2

2d+1 (n − 2) − 3n + 4

]
,

which, for h <
1

2
, improves (9), due to Proposition 4.

3.2 Upper bounds

Taking into account the domain of the function f we deal with, to get an upper bound
we must obtain a maximal element with non-null components. To this end let us
consider the set

Sβ = {ν ∈ R
n−1 :

n−1∑
i=1

νi = n, 0 < β ≤ νn−1 ≤ νn−2 ≤ · · · ≤ ν1 ≤ 2}.

For a d-regular graph, Palacios in [20] found the following upper bound where, for
simplicity, we write λ2 (P) = λ2 :

K (G) ≤ n (n − 1)

d (1 − λ2)
. (22)

The quantity (1 −λ2) is known as spectral gap. It is noteworthy to emphasize that the
bound (22) holds in general, for d = dn , as can be seen from the right inequality of
(4).

It is possible to get an upper bound in terms of the spectral gap by applying our
procedure. Taking 1 − λ2 = νn−1, let us consider the set

Sλ2 = {ν ∈ R
n−2 :

n−2∑
i=1

νi = (n − 1 + λ2), 0 < 1 − λ2 ≤ νn−2 ≤ · · · ≤ ν1 ≤ 2}.

From Corollary 6 the maximal element of Sλ2 is given by

⎛
⎝2, 2, . . . , 2︸ ︷︷ ︸

k

, θ, 1 − λ2, 1 − λ2, . . . , 1 − λ2︸ ︷︷ ︸
n−k−3

⎞
⎠

where

k =
⌊

λ2 (n − 1) + 1

λ2 + 1

⌋
and θ = λ2 (n − k − 2) − k + 2.

Using (4) now we have proven the following
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Proposition 13 For any simple connected graph G

K (G) ≤ n

dn

(
n − k − 2

1 − λ2
+ k

2
+ 1

θ

)
. (23)

In particular, for a bipartite graph, since λn = −1, we deal with the set:

Sb
λ2

= {ν ∈ R
n−3 :

n−2∑
i=2

νi = (n − 3 + λ2), 0 < 1 − λ2 ≤ νn−2 ≤ · · · ≤ ν2 ≤ 2}.

By Corollary 6 the maximal element of Sb
λ2

is

⎛
⎝2, 2, . . . , 2︸ ︷︷ ︸

k

, θ, 1 − λ2, 1 − λ2, . . . , 1 − λ2︸ ︷︷ ︸
n−k−4

⎞
⎠

where

k =
⌊

λ2 (n − 2)

λ2 + 1

⌋
and θ = λ2 (n − k − 3) − k + 1.

The upper bound (4) is given in this case by

K (G) ≤ n

dn

(
1

2
+ n − k − 3

1 − λ2
+ k

2
+ 1

θ

)
. (24)

In what follows we consider some examples of particular graphs whose spectral
gap is well-known. It is worth noting that, due to Proposition 4, our bounds always
perform equal or better than the bounds provided in [20].

1. The complete graph

For a complete graph Kn , we know that λ2 = − 1

n − 1
. In this case

k = 0 and θ = n

n − 1

and (23) becomes

K (G) ≤ n

d

(
(n − 2) (n − 1)

n
+ n − 1

n

)
= (n − 1)2

d
= (n − 1)

giving the exact value of the index.
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Table 4 Numerical results for
the star graph K1,n−1

n Bound (22) Bound (26) Exact value (2)

2 2 1 1

3 6 4.5 4

4 12 10 9

5 20 17.5 16

6 30 27 25

7 42 38.5 36

2. The complete bipartite graph
For a complete bipartite graph Kr,s graph, with r < s, n = r + s we know that
λ2 = 0 and

Sb
λ2

=
{

ν ∈ R
n−3 :

r+s−2∑
i=2

νi = r + s − 3, 1 ≤ νn−2 ≤ · · · ν2 ≤ 2

}
.

By simple computations we get:

k = 0 and θ = 1.

The vector of minimal elements in this case is⎛
⎝1, 1, . . . , 1︸ ︷︷ ︸

r+s−3

⎞
⎠

and by (24) the bound is

K (G) ≤ r + s

r
(r + s − 3/2) . (25)

For r = s = n we get the real value of the index K (G) = 4n − 3.

2.a The star graph
The star graph is the particular case of complete bipartite graph K1,n−1 and, by
considering n = s + 1, r = 1, (25) becomes

K (G) ≤ n (n − 3/2) . (26)

We provide some numerical results in order to compare bounds (26) and (22)
which, as observed before, holds in general when d = dn, and the actual value of
the index. The results are shown in Table 4.
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Table 5 Numerical results for
the n-cycle

n Bound (22) Bound (23) Exact value (2)

3 2 2 2

4 6 5 5

5 14.472 10.031 10

6 30 18 17.5

7 55.775 33.259 28

8 95.598 50.538 42

Table 6 Numerical results for
the d-cube

d Bound (22) Bound (23) Exact value (2)

2 6 5 5

3 28 20.66 19.33

4 120 84.66 68.67

5 496 334.5 236.53

3. The n-cycle
The n-cycle graph is a particular type of d-regular graph, specifically it is a 2-reg-

ular graph, whose second largest eigenvalue is λ2 = cos

(
2π

n

)
.

The numerical results are summarized in the Table 5, for n ≥ 3.

4. The d-cube

The second largest eigenvalue of the d-cube is λ2 = d − 2

d
. We show the results

in Table 6.

3.3 The degree-Kirchhoff index

To conclude, we want to point out that our work thus far can be applied to another
index related to the Kirchhoff index. The degree-Kirchhoff index was proposed by
Chen and Zhang in [5], defined as

K
′
(G) =

∑
i< j

di d j Ri j .

This index was looked at in [18], where the following expression in terms of the
eigenvalues of the transition matrix P was given:

K ′(G) = 2|E |
n∑

j=2

1

1 − λ j
. (27)

Furthermore, it was shown that
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K
′
(G) ≥ 2|E |(n − 1)2

n
, (28)

which is basically bound (6), after replacing n
d1

with 2|E |. An upper bound of order

n5 for this index that is attained (up to the constant of the leading term) by the barbell
graph was provided in [18] also. With electrical network techniques, the lower bound
was improved in [19] to

K
′
(G) ≥ 2|E |

(
n − 2 + 1

d1 + 1

)
. (29)

It is clear, by looking at the expression (27), that we can obtain new upper and
lower bounds for K

′
(G) by exchanging in (17), (18), (23) and (24) the terms n

d1
or

n
dn

with 2|E |, and by exchanging K (G) with K
′
(G). Of all those bounds, perhaps the

only one worth mentioning explicitly is in the following

Proposition 14 For any simple connected G we have

K
′
(G) ≥ 2|E |

[
1

1 + σ√
n−1

+ (n − 2)2

n − 1 − σ√
n−1

]
. (30)

This bound improves (29) if G has at least one vertex with degree n − 1.

Here σ is defined as in Proposition 10. The only thing left to show is that (30)
improves (29) under the given condition, which is clear because in that case (29)
becomes (28), which is always less than (30), by the arguments after Proposition 12.
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